DETERMINATION OF JOULE DISSIPATION FOR A LIQUID WITH VARIABLE CONDUCTIVITY
MOVING IN AN INHOMOGENEOUS MAGNETIC FIELD

V. A. Buchin
Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 9, No. 6, pp. 107—110, 1968

There is a very wide class of conductors in which the conductivity cannot be regarded as independent of the
current density. Obvious examples are plasmas and semiconductors. The physics of this phenomenon was investigated
in {1,2], where it was found that the conductivity is a function of the modulus of the current density. The dependence of
the current on the electric field strength in Ohm's law becomes nonlinear. As a result, the equations of
electrodynamics become nonlinear: they may be either elliptic or hyperbolic, depending on the type of dependence of
the conductivity on the current. It was shown in [3] that relationships ¢ = ¢(j) which lead to the hyperbolic case have no
physical significance. The equations are elliptic when the function o = ¢(j) satisfies the condition

. ds
c~171->0.

In many practical cases the conductivity is only weakly dependent on the current; thus

¢ = 0, + 20, (), 0, = const (0.1)

where o0y(j} is a differentiable function and € is a small parameter. The small-parameter method may then be used for
finding the unknowns. This method is used (e. g., [4]) for finding, in first approximation in &, the Joule loss in the
region close to an electrode with a constant magnetic field. In addition to the Joule loss, losses due to edge effects are
also possible. In the channels of an MHD generator, conditions may be realized in which the magnetic field remains
uniform for a considerable distance from the electrode region, beyond which it falls rapidly to zero. The closed
currents that lead to the extra losses arise at the points where the electrically conducting medium enters and leaves
the magnetic field. If the length of the uniform-~field section outside the electrode zone is more than twice the channel
width, we can obtain a good approximation to the problem of end effects where the medium enters and leaves the
generator channel by considering the current distribution in a conducting medium moving in an infinitely long channel
with dielectric walls in the presence of a magnetic field which is constant in half of the channel and zero in the other
half. The Joule loss in a channel with parallel walls was calculated in [5] for the case of constant conductivity.

The same problem will be considered below, except that the conductivity will be assumed weakly dependent on
the current. An expression is obtained for the Joule loss to first approximation in €; this expression only contains the
zero approximation for the current. The equations of electrodynamics are always elliptic when the conductivity -
depends weakly on the current. We also perform a numerical computation from our expression for a concrete function
of the (0.1} type, namely

oy (j) = 02/ j,% o, = const.
Here j, denotes some characteristic current.

1. Consider a two~dimensional steady-state flow of conducting liquid in a channel with insulated walls (Fig. 1).
A constant magnetic field B = (0, 0, By) with vector directed towards the reader is applied in the right-hand side of the
channel. The magnetic field in the left side of the channel is zero. Combining these two conditions, we get

B=(0, 0, B), B=B¢0(x), Bo=rconst,

_ [ (=>0)
vw={ . (1.1)
The liquid flows in the channel with constant velocity
V = (uy, 0, 0), up= const. . (1.2)

We shall solve the problem in the approximation in which the hydrodynamic quantities can be assumed known.

Using Ohm's law and the fact that the electric field is potential, and introducing the stream function ¥ with the
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current density j:

(1.3)
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we get the equation for ¥:

. 1 Bod
dlv[——do—i-scl(;’) gradw]=———"° - (=) . (1.4)

Here 6(x) is the Dirac delta function.
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Fig. 1
On the insulated channel walls we have the boundary condition j, = 0. No currents flow at infinity, i.e.,
jle=to =10 For ¢ we have
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(1.5)

We seek the solution of (1.4) under the boundary conditions (1.5) in the form
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Here, ¥, is the zero approximation for ¢, and ¥, + €¥; the first approximation. Putting € = 0 in Eq. (1.4) and
boundary conditions (1.5), we get the following equation and boundary conditions for ¥y:

B
Awoz_ﬂ'%"a_(gpl, (1.6)
Mo o 9o
0 [y=x35 7 |x=too oy x=ioo:0' (1-7)

On differentiating (1.4) and boundary conditions (1.5) with respect toe, then putting € = 0, we get the following
equation and boundary conditions for y¥;:

61 (Jo)

Ay = div (T grad mo) , (1.8)
9Py 9Py AR
2 P S PV T PRV (1.9)

Solving (1.6) under boundary conditions (1.7), we obtain the zero approximation for the current density j;:

— __SouoBo j ch nz /28 | sin ny / 26

Tao = 2nc  chnx/20 —sinmy /25 °
. SpupB fa 73 T Gotio B 1
o = S0 et [ 32 s 2] 4 988 (5 1), 10)

Notice also that, as |x| — =, the exact solution of (1.4) under boundary conditions (1.5) tends to a constant (i. e. ,
the current density tends to zero), since the effect produced by nonuniformity of the magnetic field becomes negligible
when |x| is large.

We now turn to finding the Joule dissipation Q in the first approximation. The exact expression for Q is
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0= S Ssg%dydz.
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In view of this, the dissipation is, in first approximation,

P= 005+ eQ1,
Qa=0Ql.—, Qo= S‘ SSIOZ/GOdi/dz s
Q1= aa—g — Q1= S SS [Eo— (Jo, 1) — GITE),:—)-]V] dydz .

Differentiating (1.3) with respect to € and putting € = 0, we get

i ji— 51 (I fo) 5

% jo=-—grad @,

and on using (1.8), we get
o & ,
= S S [.._.(grad Wy, grad ) — =L 91 /o) ]'02] dyde =
Go?
o e 2 ,
= S Ss [%div (bo grad 1) — = Yota — 35%)_ ing]dyd:v:
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Here, 3, and 3, are the unit base vectors.

We can show that

S  div (‘Pl]o) dyde =0 .
—0os —6
Using Green's theorem for the rectangle with vertices A(~a, —6), Bla, -8), Cla, ),
(1.7) and the fact that j; — 0 as x —~ +«, we have

o B a ¥
2§ §aivi@doayas —lim2 § {div(@uo) dydo =
a—>o J
—c0 —3§ —a —
=2lim [ S (— P+ | oy iy + S (= Pif ) do + S @u’xody] =0
a0t Jg BC CcD DA i

(1.11)

and D(-a, 6), together with

since the integrals over AB and CD vanish due to the boundary condition Jujy= =5 = 0, While the limits of the integrals

over BC and DA vanish as a¢ — », since j; — 0 as x — %,

Hence the expression for the Joule dissipation in first approximation is

cw & ¥
S S + 851 So + 51 (o) Jodydz = S S 5 (Io) jidydz .
—c —D < —&

(1.12)



To find P, we only need to know the zero approximation for the current density jg.

Similar expressions may be obtained in the case of a two- or three-dimensional channel of arbitrary finite cross-
section, with no restrictions on the velocity field or the magnetic field (the integration is performed over the region
occupied by the liquid), provided that the sole condition is satisfied, that the currents vanish at infinity.

2. As an example, take the following particular case of (0.1):
0 = 0 + €012/ j42,

Here, j, is some characteristic current density,

Jx

51 = const, 1 5 lotdyda. (2.1)
*
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The first integral is evaluated in [5]:

5 © B
Qo= S S.Liozdydx—mc"ﬁ uPBe? 1.052, Q1= —2k S Sfo'dyd"
0 Golg?
-0

—0 —8

We perform the changes of variables

1, ch(nz/28) + sin (my / 25) _ Y
T_—lnch(m/%)——sin(ny/%) , 0= arctg[sh o5 5e 26]’ (2.2)

and take the dimensionality factor outside the sign of the double integral; we then get

24822 Byt 248%uq* B
01 = HZT0 e PulBlK, 0= _____°15°f el 5019, (2.3)
P deod
=% 2 e 00T 2.
£ n2 S 3(1 + o ch?ft—costw ’ (2.4)

[
5:120 3

— 2.06355 =~ 3.019,
1bn Tttt A

The final expression is

_ 166062 Gldozéﬁgllo“Bo‘j .
P =0 utBe 1.052+a—m7264_ 3.019. (2.5)
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