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There is a very wide class of conductors in which the conductivity cannot be regarded as independent of the 

current density. Obvious examples are plasmas and semiconductors. The physics of this phenomenon was investigated 
in [i, 2], where it was found that the conductivity is a function of the modulus of the current density. The dependence of 

the current on the electric field strength in Ohm's law becomes nonlinear. As a result, the equations of 
electrodynamics become nonlinear: they may be either elliptic or hyperbolic, depending on the type of dependence of 

the conductivity on the current. It was shown in [3] that relationships ff = (r(j) which lead to the hyperbolic case have no 

physical significance. The equations are elliptic when the function a = or(j) satisfies the condition 

dz 
z - i - ~ i  > 0 .  

In many practical cases the conductivity is only weakly dependent on the current; thus 

= % + ~ 1  (i), % = const  ( 0 . 1 )  

where ~l(J) is a d i f fe ren t iab le  function and e is a sma l l  p a r a m e t e r .  The s m a l l - p a r a m e t e r  method may then be used for 
f inding the unknowns. This  method is used (e. g . ,  [4]) for finding, in f i r s t  approximat ion  in e, the Joule  loss  in the 
region c lose  to an e lec t rode  with a cons tan t  magne t ic  field. In addition to the Joule  loss ,  losses  due to edge effects a re  
also poss ible .  In the channe l s  of an MHD genera to r ,  condit ions may be rea l i zed  in which the magnet ic  field r e m a i n s  
un i fo rm for  a cons ide rab le  d i s tance  f rom the e lec t rode  region,  beyond which it  falls rap id ly  to zero. The closed 
c u r r e n t s  that lead to the ex t ra  l o s se s  a r i s e  at the points where the e l ec t r i ca l ly  conducting medium en t e r s  and leaves  
the magnet ic  field. If the length of the un i fo rm- f i e ld  sect ion outside the e lec t rode  zone is more  than twice the channel  
width, we can obtain a good approximat ion  to the p rob lem of end effects where  the medium en te r s  and leaves  the 
gene ra to r  channel  by cons ide r ing  the c u r r e n t  d i s t r ibu t ion  in a conduct ing med ium moving  in an inf ini te ly  long channel  
with d i e l ec t r i c  wails  in the p r e s e n c e  of a magnet ic  field which is cons tant  in half of the channel  and zero in the other 
half. The Joule  loss  in a channel  with pa ra l l e l  walls was ca lcula ted  in [5] for the case  of cons tant  conductivity.  

The same problem will be considered below, except that the conductivity will be assumed weakly dependent on 

the current. An expression is obtained for the Joule loss to first approximation in e; this expression only contains the 

zero approximation for the current. The equations of electrodynamics are always elliptic when the conductivity 

depends weakly on the current. We also perform a numerical computation from our expression for a concrete function 
of the (0.i) type, namely 

a! (]) = ~1]2 / ]* ~, ~1 = const. 

Here j. denotes some characteristic current. 

i. Consider a two-dimensional steady-state flow of conducting liquid in a channel with insulated walls (Fig. I). 
A constant magnetic field B = (0, 0, B0) with vector directed towards the reader is applied in the right-hand side of the 
chm~nel. The magnetic field in the left side of the channel is zero. Combining these two conditions, we get 

B=(0, 0, B), B=Bo0(x), Bo=eonst, 

o(x)= {; ix>o) (1.1) 
(z < o). 

The l iquid flows in the channel  with cons tan t  veloci ty 

v = (u0, o, 0), uo= const. (1.2) 

We shal l  solve the p rob lem in the approximat ion  in which the hydrodynamic  quant i t ies  can be a s sumed  known. 

Using Ohm's  law and the fact that the e l ec t r i c  field is potent ia l ,  and in t roduc ing  the s t r e a m  function r with the 
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c u r r e n t  dens i ty  j:  

( , ) ( 0, 0 , )  
l-~(6o+e61(1)) E + ~ V x  B i x =  O-'y" ' 1~: - -  ~ ' 

E = -- grad (p 

we get the equation for r 

i ] uoBo5 (x) 
div 'r + e*l (/) grad ~ = c " 

Here  5(x) is the Di rac  del ta  function. 

Y v_. z~ 

Fig. 1 

On the insula ted  channel  walls  we have the boundary  condition Jn = 0. No c u r r e n t s  flow at inf ini ty,  i . e . ,  

J l , = + o o = ~  For  C w e h a v e  

=o ' a, x=• =0, ~ x=_• = 0  

We seek the solut ion of (1.4) under  the boundary  condit ions (1.5) in the fo rm 

o o  

r =,}.] ~ ( _ okr . a,k a,~ ~. 

k - ~ 0  " 

(1.3) 

(1.4) 

(1.5) 

Here,  r is the zero  approximat ion  for r and r + er the f i r s t  approximat ion.  Put t ing  e = 0 in Eq. (1.4) and 
boundary  condit ions (1.5), we get the following equation and boundary  condit ions for r 

A,o = - ~ouoBo8 (~), (1.6) 
�9 e 

0~o I 0.0 x=• 0.o 0-u ~=+ =0, o-7- Oy ~=• =0 .  (1.7) 

On d i f fe ren t ia t ing  (1.4) and boundary  condit ions (1.5) with r e spec t  to e, then putt ing e = 0, we get the following 
equation and boundary  condit ions for r 

f ~, (10) . . . .  i~o) (i. 8) A~I = div ~ S . . . .  

041 I ~ 041 =0 .  (1.9) 0--~" v=+ =0, x=+co -~'0' Oy x=+co 

Solving (1.6) under  boundary condit ions (1.7), we obtain the zero  approximat ion  for the c u r r e n t  dens i ty  J0: 

]xo = - -  *ouoBo In ch ~x / 25 + sin ny / 25 
2nc  ch gx / 25 --  sin ~y / 25 ' 

~o~oBo a~tg [ ~ h ~ s ~  ~y] + 0 (~)-- (1.10) 
/ ~ o = -  ~c L ~ 25J - 7 - -  

Notice also that, as Ixl ~ oo, the exact  solution of (1.4) under  boundary condit ions (1.5) tends to a constant  (i. e. , 
the c u r r e n t  dens i ty  tends to zero),  s ince  the effect produced by nonuni formi ty  of the magnet ic  field becomes  negl igible  

when lxl is la rge .  

We now tu rn  to finding the Joule  d i ss ipa t ion  Q in the f i r s t  approximat ion.  The exact expres s ion  for Q is 
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In view of this ,  the d i ss ipa t ion  is,  in f i r s t  approx imat ion ,  

Q0 = q I,=o, 

aQ 

P = O0 + sql, 
~ v  8 

- - o o  - - 8  

Co g 

" -  . (1.11) 

Differentiating (1.3) with respect to e and putting e = 0, we get 

~ j l  -- ~1 (]0) Jo -- -- grad (P1, ~ -  - 

and on using (1.8), we get 

Here ,  3x 

oo  8 

. . . .  ~l (% ; s l  QI= S S [ ~  (grad*~ gradwl)--~_21oldydx= 
--oo --5 (30 J 

? 8 2 -- - - ~  18['~oodiV(*~176 
o o  - -  ~0 dO _J 

= -~o~ _$8[ 2 d'v (% grad *x, - 2~- % div ( . 1 ~ 0  \ ~o([~176176176 *o ~ J 

c*  5 co  ~ . 

=--ooS _S8 div [2~'b~ (~  grad ~';x - ~'("~176 + _J ~ --aS ~'~162 
c o  8 

~ 2 S S div [-- O (*~ ~x ~-- O (~PI) ~'] dydx ' - -  
---o0--8 

---,:>o - - 8  --co - - 8  - - c o  - - 5  

and a u are the unit base vectors. 

We can show that  

2 f l " div(dlj~ 
--c:f~ --8 

Using G r e e n ' s  t h e o r e m  for  the r ec t ang le  with v e r t i c e s  A ( - a , - 5 ) ,  B ( a , - 6 ) ,  C(a, 6), and D(-a,  5), toge ther  with 
(1.7) and the fact  that  J0 ~ 0 as x ~ !~o, we have 

c o  5 a 8 

- - c o  - - ~  - - a  - - 8  

since the integrals over AB and CD vanish due to the boundary condition ]~@=+_5 = 0, while the limits of the integrals 
over BC andDA vanish as a~oo, since J0~ 0 as x~• 

Hence the expression for the Joule dissipation in first approximation is 

co  8 co  8 

/0 y - 

- - c a  - - B  - - ~  - - 8  

(1o12) 
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To find P, we only need to know the zero approximat ion  for the c u r r e n t  dens i ty  J0. 

S imi la r  express ions  may be obtained in the case  of a two- or t h r e e - d i m e n s i o n a l  channel  of a r b i t r a r y  f ini te  c r o s s -  
sect ion,  with no r e s t r i c t i o n s  on the veloci ty field or the magnet ic  field (the in tegra t ion  is pe r fo rmed  over the reg ion  
occupied by the liquid),  provided that the sole condit ion is sat isf ied,  that the c u r r e n t s  vanish  at infinity.  

2. As an example,  take the following pa r t i cu l a r  case of (0.1): 

(~ = oo "k ~ada / j .  ~. 

Here ,  j .  is some cha rac t e r i s t i c  c u r r e n t  densi ty ,  

co  ~ c o  

The f i r s t  in tegra l  is evaluated in [5]: 

Q o =  

c o  

Io ayax . . . .  cen a uo2Bo ~ i.052, 
oo  6 

We pe r fo rm  the changes of va r i ab l e s  

�9 ~--11 n ch(gx/26) ~- sin (~y/26) (o=--arctg[sh n~ sec gY], 
2 c h ( z ~ x / 2 5 ) - - s i n ( n y / 2 6 )  ' [ 28 26J  

(2.2) 

and take the d imens iona l i t y  factor  outside the sign of the double integral ;  we then get 

Qz = .~la~176176 K, Q1 = alz~176176 3.0t9, 

/~ l t (T2 -~ (02)2 da)d'~ K = z- T ~h ~ v -- cos e o) 
0 o 

K 93 ~ 5z~eG n82.06355 ~ 3.0i9. 
-~ ~ (5 -} t2 24 

(2.3) 

(2.4) 

The final  exp res s ion  is 

_ 1 6 a o 6  ~ . ~D ~ 1 . 0 5 2 + 8  ala~176176 3 1 0 1 9 .  P--c--i-~3-o ~o i.~n~ (2.5) 
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